目前,联邦图神经网络(GNN)由于其在现实中的广泛应用而没有违反隐私法规而引起了很多关注。在所有隐私保护技术中,差异隐私(DP)是最有希望的,因为它的有效性和轻度计算开销。但是,基于DP的联合GNN尚未得到很好的研究,尤其是在子图级环境中,例如推荐系统的情况。最大的挑战是如何保证隐私并在联邦GNN中解决非独立和相同分布的(非IID)数据。在本文中,我们提出了基于DP的联合GNN DP-FEDREC来填补空白。利用私有集合交叉点(PSI)来扩展每个客户端的本地图,从而解决了非IID问题。最重要的是,DP不仅应用于权重,而且应用于PSI相交图的边缘,以完全保护客户的隐私。该评估表明,DP-FEDREC通过图形扩展实现了更好的性能,而DP仅引入了很少的计算开销。
translated by 谷歌翻译
无监督域适应(UDA)技术的最新进展在跨域计算机视觉任务中有巨大的成功,通过弥合域分布差距来增强数据驱动的深度学习架构的泛化能力。对于基于UDA的跨域对象检测方法,其中大多数通过对抗性学习策略引导域不变特征产生来缓解域偏差。然而,由于不稳定的对抗性培训过程,他们的域名鉴别器具有有限的分类能力。因此,它们引起的提取特征不能完全域不变,仍然包含域私有因素,使障碍物进一步缓解跨域差异。为了解决这个问题,我们设计一个域分离rcnn(DDF),以消除特定于检测任务学习的特定信息。我们的DDF方法促进了全局和本地阶段的功能解剖,分别具有全局三联脱离(GTD)模块和实例相似性解剖(ISD)模块。通过在四个基准UDA对象检测任务上表现出最先进的方法,对我们的DDF方法进行了宽阔的适用性。
translated by 谷歌翻译
监督PIX2PIX和无监督的周期一致性是两个模式,主导医学图像到图像转换的领域。但是,两种模式都是理想的。 PIX2PIX模式具有出色的性能。但是它需要配对且良好的像素 - 明智的对齐图像,这可能并不总是可以实现由于获取配对图像的次数之间的呼吸运动或解剖学变化。循环一致性模式与训练数据不那么严格,并且在未配对或未对齐的图像上运行良好。但它的表现可能不是最佳的。为了打破现有模式的困境,我们提出了一种称为中文的新的无监督模式,用于医学图像到图像转换。它基于“损失校正”理论。在登录中,未对准的目标图像被认为是嘈杂的标签,并且发电机接受了额外的登记网络,以适应性地拟合未对准的噪声分布。目标是搜索图像到图像转换和注册任务的常见最佳解决方案。我们将登上regan纳入一些最先进的图像到图像形象翻译方法,并证明了Regan可以很容易地与这些方法结合,以改善他们的性能。如我们模式中简单的Cyclegan,即使使用较少的网络参数,也会超越最新的漂亮。根据我们的结果,Reggan以错位或未配对数据上的对齐数据和周期一致性的PIX2PIX两者都表现优惠。 Reggan对噪音不敏感,这使得它可以更好地选择各种场景,特别是对于医学图像到图像转换任务,其中不可用的井像素对齐数据
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted live experiments on two real-world facilities in partnership with Trane Technologies, a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
translated by 谷歌翻译
关于对比学习的最新研究仅通过在医学图像分割的背景下利用很少的标签来实现出色的性能。现有方法主要关注实例歧视和不变映射。但是,他们面临三个常见的陷阱:(1)尾巴:医疗图像数据通常遵循隐式的长尾分配。盲目利用训练中的所有像素会导致数据失衡问题,并导致性能恶化; (2)一致性:尚不清楚分割模型是否由于不同解剖学特征之间的类内变化而学会了有意义但一致的解剖学特征; (3)多样性:整个数据集中的切片内相关性已得到明显降低的关注。这促使我们寻求一种有原则的方法来战略利用数据集本身,以发现不同解剖学观点的类似但不同的样本。在本文中,我们介绍了一种新型的半监督医学图像分割框架,称其为您自己的解剖结构(MONA),并做出了三个贡献。首先,先前的工作认为,每个像素对模型培训都同样重要。我们从经验上观察到,仅此单单就不太可能定义有意义的解剖特征,这主要是由于缺乏监督信号。我们通过使用更强大的数据增强和最近的邻居展示了学习不变的两个简单解决方案。其次,我们构建了一组目标,鼓励模型能够以无监督的方式将医学图像分解为解剖特征的集合。最后,我们在具有不同标记设置的三个基准数据集上的广泛结果验证了我们提出的MONA的有效性,该数据在不同的标签设置下实现了新的最新设置。
translated by 谷歌翻译
美国庞大的桥梁网络对其维护和康复提出了很高的要求。手动视觉检查的大量费用在某种程度上是一定程度的负担。高级机器人已被利用以自动化检查数据收集。在大量检查图像数据中,自动化多类元素的分割以及元素的表面缺陷将有助于对桥梁条件进行有效评估。培训单独的单任务网络,用于元素解析(即多类元素的语义分割)和缺陷分段无法在检查图像中合并这两个任务之间的密切连接,其中存在可识别的结构元素和明显的表面缺陷。本文的动机是开发多任务深神经网络,该网络完全利用桥梁元素和缺陷之间的这种相互依赖性来提高模型的性能和概括。此外,研究了提议的网络设计改善任务性能的有效性,包括特征分解,串扰共享和多目标损耗函数。开发了带有桥梁元件和腐蚀的像素级标签的数据集,用于培训和评估模型。评估开发的多任务深神经网络的定量和定性结果表明,推荐的网络不仅超过了独立的单任务网络(在桥梁解析上高2.59%,在腐蚀细分方面高2.59%),而且在计算时间和实施中也是如此能力。
translated by 谷歌翻译
空中机器人(例如无人机)已被利用进行桥梁检查。可以通过板载摄像机收集具有可识别的结构元素和明显表面缺陷的检查图像,以提供有价值的信息以进行条件评估。本文旨在确定用于在检查图像中解析多类桥梁元素的合适的深神经网络(DNN)。一组广泛的定量评估以及定性示例表明,高分辨率净(HRNET)具有所需的能力。通过数据增强和130张图像的训练样本,预先训练的HRNET有效地转移到结构元件解析的任务中,并达到了92.67%的平均F1得分和86.33%的平均值。
translated by 谷歌翻译
最近的作品显示了深度学习模型在词汇(IV)场景文本识别中的巨大成功。但是,在现实情况下,播音外(OOV)单词非常重要,SOTA识别模型通常在OOV设置上表现较差。受到直觉的启发,即学习的语言先验有限的OOV预言性,我们设计了一个名为Vision语言自适应相互解码器(VLAMD)的框架,以部分解决OOV问题。 VLAMD由三个主要谱系组成。首先,我们建立了一个基于注意力的LSTM解码器,具有两个适应性合并的仅视觉模块,可产生视觉平衡的主分支。其次,我们添加了一个基于辅助查询的自动回归变压器解码头,以进行通用的视觉和语言先验表示学习。最后,我们将这两种设计与双向培训相结合,以进行更多样化的语言建模,并进行相互的顺序解码以获得强烈的结果。我们的方法在IV+OOV和OOV设置上分别实现了70.31 \%和59.61 \%单词的准确性,分别在ECCV 2022 TIE TIE Workshop上的OOV-ST挑战的裁剪单词识别任务上,我们在这两个设置上都获得了第一名。
translated by 谷歌翻译
从图像中学习心脏运动中的时空对应关系对于理解心脏解剖结构的潜在动力学很重要。许多方法明确施加了平滑度约束,例如位移矢量字段(DVF)上的$ \ Mathcal {l} _2 $ NORM,而通常忽略转换中的生物力学可行性。其他几何约束要么正规化特定的感兴趣区域,例如在心肌上施加不可压缩性,要么引入其他步骤,例如在物理模拟的数据集上训练单独的基于网络的正规器。在这项工作中,我们提出了一个明确的生物力学知识,因为在所有心脏结构中对更通用的生物力学上可行的转化进行建模,而无需引入额外的训练复杂性,因此对预测的DVF进行了正则化。在2D MRI数据的背景下,我们验证了两个公开可用数据集的方法,并执行广泛的实验,以说明与其他竞争性正规化方案相比,我们提出的方法的有效性和鲁棒性。我们提出的方法可以通过视觉评估更好地保留生物力学特性,并使用定量评估指标显示分割性能的优势。该代码可在\ url {https://github.com/voldemort108x/bioinformed_reg}上公开获得。
translated by 谷歌翻译